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Abstract—When humanoid robots learn complex sensorimotor
abilities from interaction with the environment, often a human
experimenter is required. For a social companion robot, it is
desirable that the learning can also be assisted by non-expert
users. To achieve this aim, we present an embodied dialogue
system which enables a humanoid to take on an active role
during learning by guiding its user with verbal communication
and through the display of emotions. We suggest an experimental
setup for evaluating how the active role affects the learning
result and the subjective evaluation of the humanoid by human
participants.

I. INTRODUCTION

Humanoid robots are designed to operate alongside or to-
gether with humans in complex and unstructured everyday en-
vironments. In contrast to industrial robots, their tasks require
adaptation to novel challenges that can be overcome through
learning. State-of-the-art learning approaches, such as deep
neural networks [1], [2], rely on a large quantity of training
data. Apart from using costly human annotation, these data
can be gathered through interaction with the environment [3]–
[5]. Similar to a child, a humanoid can incrementally develop
complex visuomotor skills through interacting in the physical
world [6]. Due to their human-like appearance, humanoids can
be assisted in this learning by non-expert users in a similar
way these users would teach a child. This proposal of child-
like learning for successful artificial intelligence goes back
to Alan Turing [7]. Recent work, however, has shown that
especially in teaching robots, people find it easier to teach a
robot if it behaves similarly to a child [8]. Human assistance is
often useful, as a humanoid occasionally needs help during the
process, e.g. when objects roll off tables or are out of reach.

However, there are large differences between a child and
a robot. While a child needs to develop all of its cognitive
abilities, we can employ a mixed approach for a humanoid:
some abilities develop through learning and interaction, other
abilities are designed. Moreover, these capabilities can be used
to enable an active role of the humanoid in learning.

In this paper, we present initial work on an embodied
dialogue system that enables a humanoid to guide users
through the training steps for developing visuomotor abilities,
see Figure 1. We aim to evaluate the feasibility of the approach
in guiding non-expert users to successfully collect training

Fig. 1. A robot asks for help from a human assistant to learn grasping.

data and also to observe the effect of the active role of
the humanoid with regard to the users’ subjective perception
of the humanoid. By integrating a state-of-the-art approach
for sensorimotor learning into our human-robot interaction
(HRI) research, we increase the realism of the user interaction.
Participants will take the role of a teacher of a physical robot
in a real developmental task.

II. RELATED WORK

A. Learning Visuomotor Skills

Acquiring visuomotor skills with neural network approaches
has gained interest in recent years. Mnih et al. [9] applied
deep reinforcement learning for human-level control in com-
puter games. Lillicrap et al. [10] extended the approach to
continuous deep reinforcement learning for simplified robot
arms in virtual environments. Neural reinforcement learning
approaches rely on a large number of trial and error attempts
to solve a task. They are successful in virtual environments,
which can provide a large number of training samples in
a short time at a low cost, both in terms of human su-
pervision and damage to the robot (by wear or accidents).



When adapting neural learning approaches to physical robots,
the time it takes the robot to perform actions becomes a
critical factor. As shown by Gupta and Pinto [4], it takes a
robot 700 hours of training to learn grasping positions and
angles. For non-industrial robots, this long training time often
exceeds the life-expectancy of hardware components. Levine
et al. [3] and Kerzel and Wermter [5] suggest approaches
for reducing the necessary training time by transforming the
reinforcement learning into a supervised learning task. Both
approaches rely on generating annotated training data, i.e. it
is not learned through trial and error, but only from correct
examples which leads to a shorter learning time. Levine et
al. employ computation of forward kinematics to make the
robot’s state fully observable during training time. Kerzel and
Wermter use the robot’s ability to autonomously place objects
to generate training samples. Though both of these approaches
combine the advantages of mostly autonomous reinforcement
learning with the short training time of supervised learning,
both approaches ultimately rely on human experts for initiating
the training and assisting the robot in case of errors.

Cruz et al. [11] have demonstrated that learning skills via
accordances is improved by interactive learning versus regular
reinforcement learning. Especially, speech and multimodal
feedback are useful for adding interactivity to the learning
process [12].

B. Spoken Dialogue Systems

Spoken dialogue systems (SDS) [13] are modules in HRI
systems which receive speech as input and produce the corre-
sponding replies [14]. An SDS solves five main tasks: Auto-
matic Speech Recognition, Spoken Language Understanding,
Dialogue Management (DM), Natural Language Generation
and Text-to-Speech Synthesis [14]. In this paper, we focus
on the integration of robot perception into the Dialogue
Management to facilitate learning of visuomotor skills. DM is
a decision-maker in SDS: It integrates information about the
previous dialogue, internal states of the conversation agent,
the robot’s perception and agenda to decide on actions –
which among others can be spoken utterances or motor actions.
There are two main types of the dialogue systems: reactive
and agenda-driven systems [15]. Reactive systems generate
interactive responses based on what the user said with the
purpose of producing a meaningful conversation. Agenda-
driven dialogue systems do not produce output responses
merely from the user’s inputs but changes the context of the
conversation to achieve its goals [15], which in our case is the
realization of sensorimotor ability learning phases.

The variable and open-ended nature of language is now
making data-driven methods more prominent in spoken di-
alogue systems [16] with deep learning approaches now also
being explored [17]. However, state-of-the-art dialogue sys-
tems for HRI are often still built using a pipeline of tools and
are mostly symbolic approaches to a large extent [18], [19].
Knowledge-based approaches are still efficient in restricted
domains when data is not very variable [20] and the cost-
benefit ratio of collecting and annotating data does not lend

itself to a data-dependent approach.

III. RESEARCH QUESTIONS AND EXPERIMENTAL SETUP

We aim to evaluate the effect of an active role during the
learning of a humanoid robot that is assisted by non-expert
users. In our experimental setup for grasp learning, a child-
sized humanoid interacts with non-expert participants to learn
sensorimotor skills for grasping. The grasp learning follows
Kerzel and Wermter [5]: The robot interacts with an object on
a table. It looks at, grasps and places an object repeatedly to
gather samples for training its artificial neural architecture.

This learning process is only partially autonomous: Initially,
the robot can move its hand to random positions on the table
surface. Once the robot has an object in its hand, it places
the object at a randomly chosen position and then associates
the joint values during placing the object with how the scene
looks after placement. Thus, the robot collects samples that
link motor actions to visual inputs for developing hand-eye
coordination. The robot, however, needs human assistance
during the process: It only develops the ability to link its vision
to its actions during training - it lacks this capability at first.
Thus, a human assistant must initially place an object into
the robot’s hand. The robot will then begin its autonomous
learning cycle of placing and picking up the object at random
positions. However, it can happen that the robot accidentally
moves the object during grasping or releasing. This leads to
failed grasps where human assistance is needed.

We will realize the scenario in two conditions: In the
human-guided condition, we will establish a baseline for non-
active learning. A human experimenter will introduce the robot
and the learning scenario, explain all the steps to the user,
openly operate the robot by executing command-line programs
and alert the user to situations that require assistance. To avoid
influencing the participant, pre-recorded instructions in the
same voice as used for the robot can be used. The robot will
remain silent and perform the necessary actions for learning.
It will however express emotions on it’s face to equalize the
experimental conditions.

In the robot-guided condition, the robot will take on an
active role: It will greet the participant and introduce the
learning scenario; it will comment verbally on its actions and
also use emotion expressions to indicate success or problems.
All of the robot’s actions will run autonomously, controlled
by the embodied dialogue system. Both scenarios offer an
authentic human-robot interaction based on a state-of-the-art
neural deep learning approach. Our research is guided by three
main questions:

• Does the embodied dialogue system enable non-expert
users to undergo training with the humanoid? We will
evaluate this objectively by comparing the number of suc-
cessfully collected training samples in the robot-guided
and human-guided experimental conditions.

• How comfortable and easy does the learning scenario
feel to users? We will identify possible problems with
a questionnaire and use this information to improve the



human-robot interaction and the learning scenario in
future iterations.

• How does the humanoid’s active role in learning influence
the user’s subjective perception of the robot? For this,
we will employ the established GODSPEED test from
Bartneck et al. [21] for both experimental conditions. We
will compare these results to former studies that involved
the same humanoid [22].

IV. NICO ROBOT AND GRASP LEARNING

We realize the experimental setup with NICO (Neuro-
Inspired COmpanion), introduced by Kerzel et al. [23].
NICO’s child-like design is aimed to elicit a high user accep-
tance and make users intuitively adopt the role of a teacher.

NICO is primarily endowed with capabilities for human-
like perception and interaction as well as object grasping
and manipulation: Its two arms have six degrees of freedom
and a human-like range of motion. NICO can grasp and
manipulate small objects with its three-fingered hands. The
fingers utilize a tendon mechanism which enables them to
wrap themselves around objects of various sizes. Additionally,
the state of tendons can be used as haptic feedback to evaluate
if a grasping action has been successful.

NICO’s head can perform tilt and yaw movements; it
features two cameras and two microphones. The child-like
design of the head is adapted from the iCub [24]. The head
features LED arrays around the mouth and eye regions that
display stylized facial expressions [22].

A. Neural Grasp Learning

Visuomotor skills are acquired by associating a state of the
environment with the desired action. In this paper, we follow
the approach by Kerzel and Wermter [5], where the state of
the environment is represented by images from the humanoid’s
cameras and the action equals a joint configuration that moves
the humanoid’s arm into a grasp position.

This association is facilitated by a deep neural network that
can generalize from a limited number of training samples. The
network architecture consists of two convolution layers that
process input from the two cameras in the humanoid’s head
and two dense layers that further transform this input into a
joint configuration. The neural network is trained end-to-end,
i.e. the training data consists of images and the output is the
corresponding joint configuration for grasping the objects.

The training data is collected in a semi-autonomous training
cycle, as shown in Figure 2. After the training object is placed
in the humanoid’s hand, it moved to a random position on the
table. The joint configuration that leads to this placement is
memorized. The humanoid releases the object and moves the
hand to the side to record images. These images are saved
along with the memorized joint configuration to form one
training data point. The humanoid then moves back to the
memorized joint configuration to grasp the object again. If the
grasp attempt was successful, the training cycle continues.

The approach takes advantage of the fact that placing an
object is equal to the reversed act of grasping an object. A joint

configuration used to place an object can likely also facilitate
grasping.

V. EMBODIED DIALOGUE SYSTEM

Moore [25] recently remarked that ”many roboticists regard
a speech-enabled interface as a somewhat independent, bolt-on
goody rather than a natural extension of a robot’s perceptuo-
motorsystem”. This is to be viewed as problematic since it is
much more advantageous to treat the language capabilities of
a robot as part of the overall system and it is further much
more in line with what is known about the role of language
in humans. Feldman [26] indeed points out that language and
cognition are best understood as a result of the brain being
shaped for control of a physical body which navigates within
a social world. However, this tighter coupling of the body,
its control, and the dialogue processing system have not been
fully explored in human-robot interaction research with respect
to system design.

In this paper, an embodied dialogue system is implemented
as a command center connecting all components that are
involved in accomplishing visuomotor tasks. The Dialogue
System is embodied as the decision-maker connecting each
component together instead of being an independent module
itself. The agenda-driven dialogue system guides the humanoid
robot in achieving a goal, such as to test its grasping ability
or to perform an object learning training. The goal is achieved
by the joint-task agenda approach [15] in which tasks are
accomplished by collaboration, combining effort from the
humanoid robot and the user. The humanoid robot carries
out its motor actions and reports its progress throughout the
process while the user has hands the object to the robot upon
request and provides assistance in case of errors.

The structured dialogue model is an effective model to
be implemented in our goal-oriented dialogue system, as the
states are atomic and finite, with its structure, position and
information of each state fixed and domain-oriented [27]. The
transition from one state to another is predefined, much like
an if-else function: if object grasping is successful, perform
action A; else, perform action B. This approach is useful in
limiting the search space, thus increasing efficiency. Besides,
the dialogue flow is controlled by restricting the flexibility. As
the goal would require the humanoid robot to perform certain
tasks in sequence, such as loading the neural network before
getting joint values, implementing a finite state approach
simplifies the interaction design.

As a decision-making module, the dialogue system em-
bodies six components in performing tasks: Motion, Vision,
Emotion, Computation, Knowledge and Natural Language
Generation. The Motion component controls the sensorimotor
ability of the humanoid robot such as moving the robot’s hand
towards the object. The Vision component, the eyes of the
humanoid robot, captures stereo images as inputs for the com-
putation. The Emotion component shows facial expressions on
the robot’s face using embedded LED lights, such as happy and
sad expressions. The Computation component loads the trained
model to the neural network and computes respective joint



Fig. 2. Training cycle for grasping: a) A human experimenter places the training object in the humanoid’s hand. b) The humanoid moves the object to a
random position on the table c) The humanoid places the object on the table and moves the hand away to records an image. d) The humanoid’s arm moves
back to the last joint configuration to grasp the object again. Steps b) to e) are repeated to gather more samples.

values for grasping. The Knowledge component stores and
provides information for the tasks, and the Natural Language
Generation component outputs speech response to the user
via text-to-speech synthesis. The Dialogue Manager is imple-
mented using SMACH1, a state machine library developed by
ROS. The Motion and Emotion components are implemented
using NICOmotion, a library to execute the NICO robot, de-
veloped by the Knowledge Technology team [23]. The Vision
component uses a common USB protocol. The Computation
component is a Convolutional Neural Network developed us-
ing Theano and Lasagne2. The Knowledge component is build
using PyKE3, a Python-based knowledge engine. The Natural
Language Generation component is implemented using the
Python Google Text-to-Speech library4.

Combining the components’ functionalities in a specific
order for each task, the embodied dialogue system decides
which action to perform next, according to which task it is
currently doing and which input it has received. There are ten
dialogue states for the system: Control, Perception, Grasp,
Fail, Success, NLG, Train, Relax, and Test, followed by a
termination state at the end (Figure 3). The Control state
receives a command from the user and decides which task is
to be performed by the humanoid robot among four available
ones: test object grasping, train object grasping, release motor
torques or load information. For example, if the train object
grasping task is requested, the Control state executes the
Perception state. In that state, the Motion component is called
to move the robot’s hand and lower the head, followed by
the Vision component to capture and save stereo images to
file. The next state Grasp loads the pre-defined model to the
neural network, computes joint values based on the stereo
images and performs the motion of grasping. Depending on
the grasp outcome, if no grasp object is detected, the Fail
state is executed which passes a dialogue ID to the NLG
state. On the other hand, if a grasp object is detected, the
Success state is executed which passes a different dialogue ID
to the NLG state. The NLG state maps the dialogue ID to the

1http://wiki.ros.org/smach [Accessed: 14.06.2017]
2https://lasagne.readthedocs.io/en/latest/ [Accessed: 14.06.2017]
3http://pyke.sourceforge.net/index.html [Accessed: 14.06.2017]
4https://pypi.python.org/pypi/gTTS [Accessed: 14.06.2017]

Fig. 3. Dialogue States for Object Grasping

respective sentence which is then conveyed to the user through
speech using text-to-speech synthesis. The NLG function can
be executed concurrently while another state is being executed,
for the purpose of reporting progress without interfering with
the executing action.

VI. EXPERIMENTAL PROTOCOL

A grasp-training task will be used to compare the effect
of robot-guided and human.guided learning of a humanoid.
After informing the participants about the experiment and
gaining written consent, we will use a questionnaire to evaluate
their previous experiences with robots. In the next step, the
participants will be randomly assigned to one of the two
conditions. The same protocol will be used for both the
robot-guided and the human-guided learning conditions, with
distinction in the way of interaction: in the robot-guided
learning scenario, the robot will communicate with the user
using Natural Language Generation, gaze, and display of
emotions throughout the process whereas, in the human-guided



Active robot-guided Scenario Human-guided Scenario
I am ready to look. The robot is ready to look.
Please put the learning object onto the table for me. Please put the learning object onto the table for the robot.
I am looking at the object. The robot is looking at the object.
I have loaded the neural network. The robot has loaded the neural network.
I computed the joint values. The robot computed the joint values.
I am ready to grasp. It is ready to grasp.
I grasp the object. The robot grasps the object.
(success) Here you go, this is for you. (success) The robot lifts the object.
(failure) Oh no, I failed to grasp the object. (failure) Oh no, the robot failed to grasp the object.
I will try again. It will try again.

TABLE I
DIALOGUES FOR GRASP EVALUATION OF ACTIVE ROBOT-GUIDED AND HUMAN-GUIDED LEARNING SCENARIO

learning scenario, the same dialogue will be given by the
experimenter to the user. Table I shows the dialogue for both
scenarios. In the human-guided condition, the robot will not
engage in dialogue interaction with the participant. Other than
that, both conditions will have the same steps:

1) Step 1: The learning phase begins by handing the
training object to the humanoid: The humanoid’s hand moves
to the starting position and opens. The participant is asked to

Fig. 4. Top: Failed grasp attempt; the humanoid displays a negative emotion
to alert the human interaction partner. Bottom: Successful grasp attempt; the
humanoid displays a positive emotion and offers the object to its interaction
partner.

place the training object into the hand. The humanoid then
closes its hand and places the object in a random position on
the table. Upon placing the object, the robot moves its hand
away from the table to capture pictures. The hand is then
moved back to re-grasp the object and continue the training
cycle. As described in section IV-A, the learning phase is
mostly autonomous after the participant has initially handed
the training object to the robot. Should an error occur, like
the training object falling off the table or being shoved away
during grasping, the participant is alerted, and instructions
are given to hand the object back to the humanoid before
the training is resumed. In the robot-guided condition, the
humanoid uses haptic perception to detect failed grasps, moves
its head to an upright position to face the participant, displays
a sad face, and requests help. In the human-guided condition,
the experimenter stops the training cycle and instructs the
participant to hand back the object. The learning phase lasts
for 10 minutes; we use a fixed time to evaluate how many
samples are collected in this time frame.

2) Step 2: Next, the participant is asked to evaluate the
learned visuomotor skills by placing the training object re-
peatedly in front of the humanoid. The participant is truthfully
informed that the evaluated sensorimotor skills were trained in
the same way as in the learning phase, but more samples were
necessary and thus an already trained neural model is used. Af-
ter the participant places the object on the table, the humanoid
looks down and records images. Using its neural network,
the robot processes these images to compute joint values
for grasping. In the robot-guided condition, the humanoid
differentiates successful and failed grasps. It reacts accordingly
by looking up, displaying a smiling face and offering the object
to the participant, or by looking up and making a sad face,
see Figure 4. In the human-guided condition, the robot lifts its
hand regardless of the success of the grasp. Table I shows the
dialogue for the robot-guided and human-guided conditions.
This phase lasts for 5 minutes.

3) Step 3: Finally, the participant is asked to evaluate both
the interaction and the humanoid. To evaluate the interaction,
a specialized questionnaire is used.The humanoid is evaluated
with the GODSPEED questionnaire [21]. Participants are
asked to rate the humanoid on 24 five-point scales between
pairs of opposed adjectives, e.g. artificial vs lifelike. The
items cover the five categories anthropomorphism, animacy,



likeability, perceived intelligence, and perceived safety.After
the experiment, participants are debriefed.

VII. CONCLUSION AND FUTURE WORK

We aim at researching the effect of an active role in learning
of a humanoid robot. We want to evaluate how well a learning
scenario that is solely mediated by the humanoid works, how
well users accept such a scenario and how the robot’s active
role in learning influences the participant’s perception of the
robot. To answer these research questions in a principled
way we designed and realized an experimental setup. We
chose the child-sized humanoid NICO [23] which, due to its
appearance, should enable participants to easily adopt the role
of a teacher. NICO’s arms have a human-like range of motion,
which enables it to manipulate an object in front of the body.
A haptic sensing mechanism in the hands informs the robot of
successful grasp attempts. NICO can display emotion on its
face to further enhance the human-robot interaction.

We employ a state-of-the-art approach for visuomotor skill
acquisition based on deep neural learning to increase the au-
thenticity of the scenario. The participants will train the robot
using the same way it has been trained by researchers. All
system components are integrated into an embodied dialogue
system that not only handles the verbal interaction with the
user but also uses knowledge about the learning progress and
haptic sensing to control a multimodal interaction that includes
physical actions and display of emotions.

In future work, we will evaluate the active learning hu-
manoid against a baseline scenario where a human experi-
menter instructs the participants to assist a robot. We will
use the insights gained from this study to improve the entire
experimental setup, ranging from the robotic hardware to the
embodied dialogue system.
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