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Abstract—The paper presents a framework allowing a robot 

to socially interact with human beings, sharing with them some 

basilar cognitive mechanisms. Robust sensing of the environment 

and people is strongly linked with the cognitive perceptive low 

level and influences its motivation. Both long-term memory and 

short-term memory store relevant data to detect and recognize 

the social context (and social practice), and the human social 

behavior. Using both internal and external evaluations, the robot 

learns and improves its social skills, which take into account its 

physiological and emotional demands (affiliation, competence, 

certainty). Social interaction is encoded in the cognitive 

architecture by considering at the same level the human 

understanding and the robot communicative actions. This is done 

by impementing a suitable ROS architecture that allow the robot 

to use the same human interaction channels (both verbal and 

nonverbal).   
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I.  INTRODUCTION  

In the future, social robots will effectively collaborate with 
people if they will be able to build a real social connection 
[9][10]. In such a case, both robots and humans have to create 
a stable and positive relationship (also including an 
interpersonal influence) based on mutual attentiveness and 
responsiveness. Humans are fundamentally cognitive 
emotional beings, and robots have to recognize and interpret 
affective signals and build suitable cognitive representations 
that include emotions,  motivations, expectations, and also the 
effects of the internal physical states [6][17][24][25]. 
Naturally, the environment can strongly influence the social 
interaction and it often determines the social context and 
behavior. Then, the robot has to interpret and interact with 
humans within the correct social practice, switching also 
among different social contexts and roles through a proactive 
behavior [13]. In the past, many approaches have simply 
exploited the causal connections between cognition and 
emotion using the classical psychology models such as 
appraisal theory. But to assure a deep understanding and 
interpretation of the social-emotional displays, we suppose 
that a whole cognitive framework should inspire the design of 
the robot software architecture. A suitable cognitive 
architecture could allow the social robot to develop their 
socio-cognitive skills within a sort of Theory of Mind, (also 
known as mental perception, social commonsense, folk 
psychology, social understanding). In fact, the robot needs the 
ability to recognize, understand, and predict the human 
behavior regarding the underlying mental states such as 

beliefs, intents, desires, feeling [12]. Moreover, the artificial 
cognitive modules could determine a social behavior of the 
robot that adheres to the people expectations, their reasoning 
and their manner of acting. In a specular way, given that 
people apply a theory of mind to understand the robot 
regarding these mental states as well, the social interaction 
could be more natural and support the building of a robust 
social rapport. 

II. THE COGNITIVE ARCHITECTURE 

 
In previous works, we introduced and explained various 

modules of a cognitive architecture based on emotions and 
motivations [1][2][4][5][7][14][15]. Such architecture has 
been employed with success in different domains and 
experimentations in real environments. It allowed the robot to 
interact naturally with normal people, to learn by human 
examples, to improve its performances considering human 
feedbacks, to show high-level cognitive capabilities such as 
creativity. In the present paper, we explain the whole 
architecture by considering all the abstraction levels and 
dealing with the whole loop perception-reasoning-acting 
during social interaction. Figure 1 shows the schema of the 
proposed cognitive architecture for the fully interactive social 
robot. 

A. Sensing Capabilities and Demands 

The robot is an embodied artificial agent that, firstly, has 
to perceive itself to evaluate the external environment. Many 
robotic applications avoid considering such aspect given that 
the focus is on the execution of a task (often manipulation, and 
navigation). The state of the robot is monitored to guarantee 
the successful execution of the sequence of commands and the 
robot integrity, and alerts cause an immediate stop.  

Before reaching such critical conditions, the internal state 
the robot could be used to modulate its behavior and to obtain 
a simple self-representation with respect the extern useful to 
build artificial feelings and emotions.  In [23] we proposed a 
somatosensory system that processes different variables of the 
robot: the temperatures and currents of joints, the battery 
charge level, the values from the gyroscope, sonars, laser, and 
other sensors. The proposed model, based on a soft sensor-
based approach, allows the robot to own its roboceptions, that, 
such as human sensations and feelings, are the basis for 
computing a more sophisticated model of emotions. 
Roboceptions are strictly related to wellness state of the robot 
and naturally contribute to influence the motivation.  



 

Fig. 1. The Schema of the Cognitive Architecture proposed for an interactive social robot. 

The internal sensing is also coupled with some physical 
feelings caused from external environment: for example, the 
presence or absence of people, the detection of noise or 
silence, the presence/absence of obstacles, the level of 
illumination. External sensing, before being processed to 
understand and manipulate the environment, causes some 
physical reaction, as is in living beings. Both internal and 
external roboceptions determine the physiological state of the 
robot and constitute one of the four drives (or demands) of the 
architecture.  

For example, in our experimentation of social interaction, 
we implemented the following roboceptions:  pain (from 
current flowing in the joints), fatigue (from the temperature of 
the joints), social space or proxemics discomfort (from sonar), 
caress pleasure (from touch sensors),  noise discomfort (from 
microphones). The algorithm that realizes the soft sensor tries 
to somehow emulate a biological mechanism by taking into 
account:  the temporal evolution,  the memory and the 
cumulative effects, the latency. A suitable normalization and a 
weighted sum allows the system to compute various global 
functions such as well-being, general discomfort, or general 
distress [23]. 

The social robot, as a human that someone defines as a 
social animal, has an innate need to socialize. The affiliation 
component manages such inclination, and elementary tasks 
could be automatically executed to satisfy this demand. For 
example, the robot could look for faces and people, or it could 
detect and localize human voices and sounds. Each drive has a 
set of predefined actions to do for increasing the level of 

satisfaction required by the corresponding demand. Finally, 
competence and certainty demands consider the capability of 
the robot to manipulate the environment and its inclination to 
act. The competence demand is associated to the level of 
expertise or proficiency with respect an action, a task, or a 
goal. The robot has to build a collection (a repertoire) of 
robust and efficient procedures to accomplish various tasks 
and store them in its Long Term Memory (LTM). The 
competence demand could be generic or referred to a specific 
domain and could be measured by counting the number of 
different procedures available. Competence has to include 
external evaluation to select good procedures and to discard 
non satisfactory ones. In the case of an artistic performance, 
the audience feedback will influence the future executions [3]. 

The certainty demand deals with the confidence to 
accomplish a task and it depends from the previous successes 
or failures with respect some internal evaluation mechanisms 
(for instance, the expectation arising from the differences with 
a simulated model). By using suitable weights on the 
parameters related to the drives, we define the personality of 
the artificial embodied agent: shy, introverted, gruff, friendly, 
curious, expansive, sociable, and so on. 

B. Knowledge Representation  

 The collection of procedures in LTM that constitute the 
expertise of the robot arises from learning phases. An 
instructor drives the learning by explicitly explaining or by 
showing examples (learning by example or imitation learning) 
[22]. Moreover, the instructor evaluates the executions to 



allow the robot to improve over the time. In previous works, 
we used Interactive Genetic Algorithms to guarantee the 
evolution of the learning level of the robot [20]. Elementary 
predefined action modules could be combined (following 
given rules) to generate various execution planes and they 
could be selected by a genetic algorithm. To represent the 
linguistic knowledge of the robot, we use the Artificial 
Intelligence Markup Language (AIML), that is an XML 
instance for creating natural language software and used in the 
implementation of some popular chat-bots. Social procedures 
(or social practices) could be organized for different social 
contexts and learned by a social instructor. The working 
memory (or Shor Term Memory, STM) has to detect the 
features useful to classify and detect the social context. We 
employ neural networks such as Self Organizing Maps (SOM) 
to learn to associate contexts to a set of feature values. 

In the case of the interaction with a human, the robot 
detects the social context by recognizing people, objects, 
facial expression, social signals, and so on. STM, in our 
architecture, also infers human emotions and compute robot 
motivation from the drives.  

C. Relevant Issues on  Social Interaction  

Depending on the behavior, Breazeal [9][10] proposed 
four classes of social robots: socially evocative, social 
interface, social receptive, sociable. Robots belonging to the 
first two classes, rely on the human tendency to 
anthropomorphize, and perform just predefined actions 
perceived as natural, but avoiding a real interaction. Socially 
receptive robots are considered socially passive, but they can 
benefit from interaction (e.g., learning skills by imitation). 
Only at the level of a sociable robot, the artificial embodied 
agent pro-actively engages with a human to satisfy internal 
social aims (drives, emotions).  Naturally, such a robot 
requires a deep model of social cognition. In our architecture, 
we use natural and intuitive communication channels, both to 
interpret the human behavior and to transfer knowledge to the 
human. Using natural communication channels includes: the 
use of natural language and a realistic speech synthesizer; a 
robust natural speech processing unit; detection and 
classification of non-verbal cues such as social signals; the 
generation of non-verbal robot actions to convey emotions and 
intentions (see the animated say module in the architecture).  

A satisfactory verbal interaction [24] requires processing 
unstructured sentences to infer grammatical and semantic 
content, searching the appropriate reply in the large repository 
of knowledge. Considering an active interaction,  the robot 
should drive the evolution of the verbal interaction, looking 
for acquiring some information from the person such as 
preferences, desiderata, demands. The robot could ask the 
person to confirm its understandings or it could require more 
details to (verbally) react in an appropriate way (for example 
in the case of ambiguity). To fully understand the human, in 
the future, the robot has to manage the highest level of a 
situated language that includes abstract things and concepts 
both in time and space. Moreover, to assure a robust and not 
ambiguous social interaction, the robot has to connect the 
situated language to the physical context performing the so-
called symbol grounding, and in some context to perform a 

meaning negotiation process. At present, we use standard 
cloud application for robust  Natural Language Processing 
(NLP), and a simple ALICE chat-bot that allow the robot to 
own a minimalist, stimulus-response language. For instance, 
the experiment depicted in figure 2 shows a simple social 
interaction task (based on AIML) to perform a drawing 
collaborative task. The robot verbally interacts with the user, 
detects a face, and uses data from a social app to propose a 
digital collage. 

 

  

Fig. 2. An example of simple social interaction to perform a drawing 
collaborative task. The robot verbally interacts with the user, detects a face, 

uses data from a social app to propose a digital collage.   

 

An important dimension of cognition is the 
affective/emotional one. The affective dimension is very 
important in human interaction because it is strongly 
intertwined with learning, persuasion, and empathy, among 
many other functions.  For the case of speech, affect is marked 
both in the semantic/pragmatic content as well as in the 
prosody of speech and the execution of non-verbal movements 
(head nods, deictic gestures, gaze movements). The Mood 
Modulator is responsible in the architecture of the affective 
modulation of the robot communication.  

D. Reasoning and Robot Social Intelligence 

A probabilistic reasoning approach allows the robot to 
manage uncertainty and the lack of knowledge that is typical 
in real social interactions. Powerful representations and 
processing formats are Bayesian Networks (BN) and Markov 
Decision Processes (MDP), that in the field of knowledge 
representation and reasoning adopt Bayesian probability for 
managing evidence and approximation. At present, we 
exploited a Hidden Markov Model (HMM) based approach, 
previously used for creative execution of dance [11][19] [21]. 

Reasoning capabilities are the same required both in 
generic tasks execution and in social interactions: prediction 
(often called temporal projection), by inferring what will 
(probably) happen if the intended course of social action is 
executed; envisioning, by inferring (all) possible events and 
effects that will happen if a social practice (as a given 
sequence of social actions) gets executed in a hypothetical 
detected social context; diagnosis, by inferring what caused a 
particular reaction in social practice execution. The social 
intelligence should allow the robot deciding what is the most 
appropriate way of interacting with the human in the detected  



 

 

Fig. 3. The ROS architecture for social interaction based on cognitive capzbilities of the robot. 

 

social context, by using classic inference, and heuristic search 
tools, machine learning methodologies. 

A cognitive robot social intelligence is necessary to build a 
positive and stable social relationship between human beings 
and the robot, especially in the collaborative task and 
providing social support in different domains (e.g. education, 
mental health, physical health, aging). Such a social robot 
could give relevant social support in different ways: 
instrumental, informational, emotional,  and companionship. 
Through complex social capabilities, these robots, for 
instance, could assist people in various ways (by providing 
information, monitoring performance, incentivizing and 
sustaining motivation, giving encouragement). 

III. THE ROS ARCHITECTURE 

We are experimenting with the proposed framework by a 
suitable ROS architecture presented in Figure 3.  The 
architecture defines main modules and topics that allow the 
robotic system to assure a cognitive control of the social 
interaction with a human user.  The various scripts belong to 
the following classes: People Perception, Verbal Interaction, 
and Non-verbal Interaction. Robot motivation and mood 
influence the social interaction that requires to adapt to a 
specific person (People_X), to the detected social context 
(SocialContext_Y), and to pursue a particular social goal (e.g., 
reception,  affective support, entertainment).  

Modules run on a distributed computational architecture, 
allowing the system to overcome the limitations of the robot 
computational resources and performances. In fact, the verbal 
interaction takes advantage of the use of robust speech 
recognition API such as those provided by Google or similar. 

Non-verbal interaction uses a deep-learning approach to 
recognize and classify human action and to produce similar 
social signs performed by the robot. The core module of the 
architecture, the Cognitive Controller, is coherent with the 
framework proposed in previous sections and determines the 
social behavior. Also, the social interaction requires  various 
levels of evaluation to assure an acceptable behavior and 
social practice. 

The presented system describes a general-purpose 
architecture for social robots that can exhibit human-like 
cognitive capabilities. The architecture can integrate various 
approaches to perform decision making, planning, and 
reasoning that can take advantage of a simplified cognitive 
model that explicit motivation, emotion, and feelings.  

The aim is to combine perceptions of inner physical states, 
of the external environment, of peoples with internal and 
external evaluation mechanisms, allowing the robot to interact 
with the human showing complex behaviors useful to execute  
“social practices” and to assure “social support.”   We are 
developing a suitable ontology and formalisms to support the 
knowledge representation based on processing perceptions. In 
preliminary experiments, since we utilized the humanoid robot  
Softbank's Pepper, we extend the NaoQi framework based on 
shared memory (memory) that stores sensors values and 
events and can represent the working memory. Long-term 
memory arises from multiple self-organizing maps to classify 
and represent actions, postures, facial expressions, verbal cues, 
and all entities that influence the social behavior of the robot. 
Learning and the evolution of the robot capabilities depend on 
evaluation based on interactive genetic algorithms.       
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