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Abstract— Robot teleoperation is crucial for many hazardous
situations like handling radioactive materials, undersea explo-
ration and firefighting. Visual feedback is essential to accurately
teleoperate a robot. Existing solutions to improve teleoperation
involve the use of multiple cameras, expensive sensors, depth
cameras or VR/AR headsets. These systems, however, have some
limitations including: safety hazards, complexity, cost, and in-
adaptability. Contrary to the existing work, we provide a simple,
cost-effective and intuitive teleoperation system by visualizing
the remote environment in an effective way to provide depth
information using only one inexpensive webcam. To validate
our system we perform a pilot study where users teleoperate
6-DOF arm and gripper to complete a pick and place task. We
compare our proposed interface with a binocular camera setup.
In addition, we test three input modalities with our interface:
joystick, keyboard and Leap Motion. We use completion time
and object manipulation accuracy as evaluation metrics. Results
from the pilot study suggest that our interface in comparison
with the binocular camera visualization improves completion
time by 64%, 43% and 41% for the joystick, keyboard and
Leap Motion, respectively. Furthermore, the number of errors
declined using our vision system regardless of the control
modality used.

I. INTRODUCTION

Teleoperation refers to a task done by a robot which is
remotely controlled by a human operator. Over the years,
the use of teleoperation has become popular in several
areas such as military [1], space exploration [2], underwa-
ter exploration [3] and tele-surgery [4]. The teleoperation
system’s performance is directly affected by the sensory
information, visualization of the remote environment, control
interface and operator capabilities. Teleoperating a robot is a
cumbersome task for non-experts if the system is unintuitive.
Humans prefer natural communication and control interfaces
with the robot. To get such a system in a teleoperation setup,
an informative and simple visual interface with an intuitive
control system is crucial.

Thus, our paper focuses on these two key components of
the teleoperation system. Conventional input modalities such
as a joystick are considered non-intuitive and are detrimental
to overall task efficiency [5]. With the advent of motion-
sensing devices, HRI researchers have shifted focus on
devising more intuitive teleoperation interfaces [6]. Quintero
et al. [7] recently developed a novel semi-autonomous means
to control a robotic arm. Using the Kinect skeleton tracker,
they mapped the human arm joints to robot joints, providing
fast but coarse positioning of the robot arm. To mitigate
this effect they introduce a visual servoing interface for fine
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positioning of the arm. Kim et al. [8] presented a master-
slave direct control interface for an excavator using sensors
placed on the operator’s hand. The results of that study in
comparison with joystick control were promising but not
conclusive. These input strategies have not successfully been
put into commercial use primarily due to safety concerns,
design complexity, equipment costs and inadaptability.

In addition to the input modality adapted for teleopera-
tion, the level of enrichment and information provided in a
feedback modality is crucial. A camera is typically used to
provide visual feedback of the teleoperation environment to
the operator. However, the 2D video seen on a screen fails
to provide depth information for the environment. Without
depth perception, the operator is likely to make errors
during teleoperation [9]. To solve this problem, people have
tested teleoperation with multiple cameras placed at different
locations to acquire depth perception for the environment
and improve task efficiency [10], [11]. However, the option
of using multiple cameras is costly, adds complexity to
the system and requires additional space. Moreover, using
another camera can also cause object occlusion [12]. Vision-
based high-fidelity depth cameras like the Microsoft Kinect
in teleoperation systems have also been proposed [7] along
with recent advances in AR and VR devices, which provide
immersion and telepresence to the operator. Peppoloni et
al. [13] implemented a 3D augmented reality-based visual
feedback system to teleoperate a Baxter robot.

These efforts to solve the problem of depth perception are
commendable; however, the efficacy of these systems relies
on expensive sensors or cameras, and the design itself may
pose additional complexity. Furthermore, these systems may
require special training to gain familiarity. Prolonged use of
VR or AR headsets in teleoperation systems may also cause
VR sickness [14].

Building on this existing work, we provide a simple, cost-
effective and intuitive teleoperation system by focusing our
efforts on visualizing the remote environment in an effective
way to provide depth information using only one inexpensive
webcam. In addition, we provide a comparison between three
control modalities: joystick, keyboard and the Leap Motion.
Thus we aimed for finding the best modality combined with
our proposed visual system to achieve a balance in task
completion time and object manipulation accuracy. Our main
contributions in this paper are the following:

• Providing depth information along with visual feedback
in teleoperation system using only one inexpensive
ordinary camera.

• Comparing between different input modalities for robot



Fig. 1. Simplified description of our system with Leap device as input

arm teleoperation.
In the rest of this paper, we describe the proposed system

in section II. Then, we present the pilot user study that
we conducted to evaluate our system and compare between
different modalities in section III. Section IV provides the
results of the study, then a discussion of the results is
provided in section V. Lastly, we conclude the paper and
propose some future directions in section VI.

II. SYSTEM DESCRIPTION

A. Overview

We propose a direct unilateral and cartesian-based control
of a 6-DOF robot in real-time. The operator can control
the arm using one of three modalities: joystick, keyboard
or Leap Motion [15] (hand motion tracking device). Fig. 1
shows our system in its simplified form when Leap Motion
controller is being used as input method. This Leap Motion
controller is connected to a local computer using a serial link.
An external camera is responsible for providing a view of
the remote environment and sending it to the local computer.
Using computer-vision techniques, depth information of the
remote location is added to the camera view to make it easier
for the user to teleoperate the robot.

Fig. 2 shows the physical setup our teleoperation system.
In the remote location, a robotic arm is used to accomplish a
pick and place task. The object to be picked is placed on top
of a box that has a QR code to help in capturing its position
with the camera. While in the operator’s location, a computer
is used to process the camera views and to handle the
communication between the robot and the control interface.
Distances between camera and the arm as well as the arms
end-effector with respect to its origin are shown in Fig. 3.
The camera is fixed at a distance such that its field of view
captures the robot and its surrounding environment. These
distances are crucial for creating an effective visualization.

Our system is evaluated on a 6-DOF Kinova Jaco2 arm.
Actuators are geared DC servomotors, which operate at
24VDC and have built-in encoders for sensing joint angles.
For our research, we operate it in Cartesian control mode.

Communication with the Kinova arm is done through a
USB port. Commanded Cartesian commands are sent to the
robot. The robot controller calculates and rotates respective
joints through its inverse kinematics module to achieve the
commanded Cartesian pose. The arms internal joint encoders
provide actual pose information back to the computer, where

Fig. 2. Physical Setup of the teleoperation system

Fig. 3. Physical Distances in our system

it can be visualized along with the commanded pose. Our
software is composed of four modules that interact with each
other simultaneously, as shown in Fig. 4.

The main communications with the robot’s DSP using
the Kinova API are functions that send a desired Cartesian
trajectory and get an actual Cartesian pose. Parameters
that are passed are in the form of a data structure. The
arrays ”ActualPose” and ”CommandedPose” hold Cartesian
information about actual and commanded pose. They contain
the following float variables:

ActualPose = [xp,yp,zp,θxp,θyp,θzp, f1p, f2p, f3p] (1)

CommandedPose = [xt ,yt ,zt ,θxt ,θyt ,θzt , f1t , f2t , f3t ] (2)

These structures are passed to the Jaco2’s API functions.
The f variables represent fingers of the arm. Variables x,y
and z are the Cartesian coordinates while θ variables are
wrist coordinates.

B. Input Modalities

We control the arm in Cartesian mode, i.e., moving the
end-effector in x, y and z directions directly. Using our
teleoperation system, arm can be controlled via joystick,
keyboard or the Leap Motion controller as follows:



Fig. 4. Program modules for system

Joystick: A joystick is available from the manufacturer
to control the robot. Rotating it left or right moves the
robot’s end-effector sideways in the x-axis while forward and
backward moves it in the y-axis. For movement along z-axis
(up and down), the joystick handle is rotated clockwise or
counter-clockwise.

Hand Motion Tracking: We use the Leap Motion con-
troller for real-time marker-less hand motion tracking. This
controller is geared to small-scale VR development applica-
tions. Fig. 1 shows the Leap Motion in our system. Hand
movements are captured by the Leap Motion controller at
a rate of approximately 115 Hz. Hand coordinates x, y, z
in meters are sent to a local computer. A program script
in C# handles the incoming data from the Leap Motion
and communicates with the Kinova arm through its API
over a separate USB link. The processed x, y, z values are
finally sent to the robot controller in the form of a Cartesian
command data structure.

Keyboard: The robot end-effector moves forward with the
W key, backward with the S key, left and right with the A
and D keys, and up and down with the E and Q keys. The
Space key is to grasp an object, i.e., the gripper closes, while
the X key opens the gripper to drop the object. We chose
these keys because the mapping has been used extensively
with video games, making it easier for users to memorize.

C. Visualization

Our visual interface consists of an orthographic visualiza-
tion of the scene as shown in Fig. 5. The environment is
set up using the Unity 3D engine. The normal front view is
provided to the user along with a vision-based top view. This
top view is created using vision-based depth information.
A black ball represents the robot end-effector’s Cartesian
movement in x, y, z directions in real-time in both views.
A green ball represents the operator’s hand movements in
x, y, z directions if the Leap Motion device is being used
as the input modality. The green ball serves as the Cartesian
command and the black ball as the follower. The blue cube in
the top view is the representation of the physical box upon
which the toy object is placed at center, calculated by the

Fig. 5. Orthographic visualization of the remote location

vision-based camera. The blue cube is not the representation
of the toy rather it is the representation of its physical
location. If the box is moved, the 2D representation of the
box moves accordingly. Similarly, the green cube represents
the target where the object is to be dropped. The problem
of depth perception is solved using the marker-based vision
system described as follows.

In our system, a single webcam is placed at a set distance
from the robot as shown in Fig. 3 earlier. The camera has
two purposes:

1) To provide visual feedback: a normal 2D frontal view
of the robot and environment in x and z axis.

2) To use computer-vision for depth calculation: as shown
in Fig. 6, vision-based camera computes distance of
marker attached to the box, relative to itself based
on a natural phenomenon of object perception. This
depth information can be visualized on the screen and
the operator can then control the arm accurately with
perceptive information about all three dimensions

The apparent size of the marker depends upon the visual
angle experienced by the camera and not the actual size. As
this visual angle seems to be proportional to the apparent
size [16], we can detect changes in size of the marker.

As the real size of the marker is constant and known, any
change in the apparent size of the marker would mean that
the marker is either coming closer or moving away from the
camera. If we move the marker towards camera, the apparent



Fig. 6. Representation of marker-based depth measurement (top view)

size of the marker experienced by camera gets bigger. As the
distance correlates with the apparent size [17], we can use
it to compute the actual distance of object from the camera.
Fig. 6 shows the described concept.

Distance of the marker relative to the camera is computed
through computer-vision based API inside our 3D visual-
ization software that calculates distance using the following
function:

dcam = f (S, p) (3)

where, S is width of marker which is 25 cm, attached to
a box. darm and dcam are distances of marker relative to the
arm’s base origin and the camera origin. p is the marker
image size perceived by the camera. The camera and arm
bases are fixed. dcam is calculated first using camera vision
API functions then darm is simply calculated as an offset.

The depth information darm is used to visualize the dis-
tance of the object in the y-axis with respect to the robot’s
base location as shown in the top view of Fig. 5. By
presenting this top view using single camera along with a
normal frontal view to the operator, we provide perceptive
information regarding all three dimensions to the operator.

Although researches involving marker-based object de-
tection through computer vision have been conducted for
Augmented-Reality (AR) systems in past [18], yet provision
of depth perception utilizing such approach specifically for
teleoperation systems is something that has not been explored
before to the best of our knowledge.

III. USER STUDY

In order to assess the overall efficacy of our vision-based
teleoperation system, we compared our system against a
conventional teleoperation system consisting of two cameras
displaying front and top view lacking any visualization aids
or computer vision [19]. In addition, we compare between
three input modalities: joystick, keyboard and leap motion
using the two visual systems. We recruited three participants

(two males, one female) from the University of British
Columbia who had no prior experience with robot teleop-
eration. A consent form approved by the ethics committee
was provided to each participant for signature prior running
the experiment which included details of experiment. The
study lasted 50-60 minutes. The participants were asked to
complete a pick and place task which consists of picking
up a small toy in a gentle way and moving towards the
destination while avoiding obstacle and then dropping the
toy in the target container. The obstacle is a wall, placed
in the way to the target position. In addition, the toy was
placed in the beginning on a box that can be opened if the
participant pressed hard on it while picking the object up.
This allows us to judge if the participants pick up the object
gently or not. Each participant went through the following
steps to accomplish the task:

A. Procedure

• Participants were introduced to the experimental setup
via verbal briefing. Then, each participant was provided
five minutes to familiarize himself with the system
which includes the three input modalities and two visual
interfaces. The participant was only allowed to look
into the screen that showed either the top and front
view using standard vision system or one camera view
with marker vision-based top view using our proposed
system.

• Using the standard vision system, participants were
asked to complete the pick and place task using Joystick,
Leap controller and Keyboard three times each, with
total of nine trials, provided in a random order.

• Then using our vision-based system, participants com-
pleted the same task using the three input modalities for
nine trials in a random order to fairly compare between
the three modalities.

• At the end, participants were asked to complete a survey
involving qualitative metrics to rate the performance of
each input modality subjectively.

B. Performance metrics

To evaluate our system, we used the following as perfor-
mance metrics:

• Task Completion time: this is the time taken by the
participant to complete the task. We recorded the com-
pletion time in each trial for all three input modalities
and the two visual interfaces.

• Number of errors: the errors we refer to in this context
are the cases in which the participant pressed the box
underneath the object to pick up (tough pickup). We
also counted the attempts to pick up the object, if the
participant did not successfully pick it up the first time.
Also, when the participant hit the wall between the
source and destination. Lastly, the case in which the
participant did not drop the object in its target position.

Using the above metrics, we compared between the three
modalities using both standard vision system (two cameras)
and our proposed orthographic vision system. In addition,



we measured the performance improvement rate for each
modality.

IV. RESULTS

In this section, we present results for task completion time
and total number of errors collected from all 3 participants
during pilot experiments. Fig. 7 shows the completion time
averaged across all participants and trials for the three
modalities: joystick, keyboard, and leap motion using the
standard vision system and our proposed system. It is clearly
shown that, our proposed vision system outperforms the
standard system regardless the input modality used. Our
system shows a significant decrease in task completion time
with 64%, 43%, and 41% compared to the standard system
using joystick, keyboard, and leap motion, respectively. In
addition, with our proposed vision system using leap motion
shows the lowest completion time with an average of 28.67
± 6.58 compared to 39.78 ± 6.28 using keyboard and
48.33 ± 12.59 using joystick. Using the same performance
metric, we also noted the general trend of the performance
improvement within the training trials of each input modality
with both visual interfaces as shown in Fig. 8. Overall,
the task completion time decreased with the trials increased
except with the case of using joystick with the standard
vision system. In addition, it is clearly shown that joystick
improvement rate is higher than the rate of both keyboard
and Leap Motion. Also, Leap Motion achieves the lowest
completion time in all trials compared to the other two
modalities.

In terms of committed errors as shown in Fig. 9, the
number of errors is comparable among the three modalities.
Similar to completion time, our proposed vision system
shows higher performance than using the standard system
among all modalities. Using our vision system has average
number of errors around 1 ± 1, 0 ± 1, and 1 ± 1 using
joystick, keyboard, and leap motion, respectively. Compared
to 4 ± 4, 2 ± 1, and 2 ± 1 using the same modalities,
respectively with the standard vision system.

To assess the system performance in terms of perceived
cognitive and physical workload, the participants were asked
to fill out a NASA-TLX Load index form after the experi-
ment had finished. Regarding satisfaction of task completion
using each input modality, two participants rated Leap Mo-
tion controller above keyboard while the third participant
rated keyboard first following the joystick commenting that
even though Leap Motion-based control was intuitive yet it
was physically more demanding than keyboard or joystick
specially if the task is too long. Leap Motion outperforms
other input modalities in terms of mental demand for all
participants.

V. DISCUSSION

Results from the pilot study suggests that our orthographic
vision-based system outperforms the conventional teleopera-
tion system with binocular camera setup. From experiments,
we learnt that the inferior performance of the standard system
as manifested in results, was mainly due to poor depth
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Fig. 7. The average completion time using the three modalities with both
the standard vision system and our proposed system
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Fig. 8. The improvement rate of the completion time across three trials of
the control modalities using two vision system

perception and object occlusion visually experienced at the
operator side. Although there are two cameras that cover the
front and top views, the participants found that it is really
hard to accurately reach the target position. In addition, the
participants perceived the binocular camera system as more
mentally-demanding than ours because they need to switch
between the two views to accomplish the task. While using
the marker-based camera view provided a sort of guidelines
that helped to finish the task easier. Furthermore, using the
Leap Motion controller with the marker-based vision system
leverage its capabilities and helped the user to finish the task
with higher performance. Rodriguez et al. [20] used the Leap
Motion for teleoperating a WAM robot and they found that
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Fig. 9. The average number of errors using the three modalities with both
the standard vision system and our proposed system



the Leap Motion is faster than the other interfaces but has
poor precision. This is because the lack of visual feedback
about the hand position which was proven to be effective
with our experiments. In comparison between various input
modalities, we found that joystick seemed to perform poorly
due to its discrete movements and non-intuitive control
while the Leap Motion controller seemed to perform slightly
better than keyboard providing a continuous control to the
operator. In addition, the task completion time improvement
rate among the three trials using joystick is higher than
the other two modalities. This suggests that joystick needs
more time for training and it is not intuitive for non-experts
to use. While keyboard and Leap Motion showed a slight
improvement which suggested that the users can easily use
them. Regarding our single-camera system, one drawback is
its inability to construct the top-view if something is blocking
the camera’s view.

Conventional approaches in teleoperation such as binocu-
lar camera system, are more mentally-demanding than ours
because they need to do mental calculations to perceive
the depth compared to our system that presents the depth
information in a simple way. This was proved from what
Marble et al. [21] concluded from their study, in which most
of their participants indicated a desire to have visual feedback
in the teleoperation system presented with depth indicators
rather than to have to deduce the depth from the interface.

This pilot study compellingly verifies the possibility of
using hand motion-capture system coupled with a simple
yet effective orthographic vision-based interface to greatly
enhance the efficacy of teleoperation tasks.

VI. CONCLUSION AND FUTURE WORK

In this paper, we addressed the fundamental problems of
perception and control experienced by the operator related to
teleoperation systems. We put efforts on providing a simple,
cost-effective and intuitive teleoperation system of a 6-DOF
robot arm in Cartesian mode. We focused on visualizing
the remote environment in an effective way by providing
depth information using only one inexpensive webcam. In
addition, we provided a comparison between three control
modalities: joystick, keyboard and Leap Motion. Our pilot
study involved three participants and consisted of a ’pick
and place’ task. Experiments involved comparison of our
vision-based camera system with a conventional system
consisting of two cameras that provide visual feedback to the
operator. We tested task performance of both systems using
joystick, keyboard and Leap controller. Results from Pilot
studies showed that our vision-based system outperforms
the conventional teleoperation system in terms of efficiency
and accuracy. Among three input modalities, Leap Motion
controller slightly outperformed the keyboard while joystick
performed poorly. Since our pilot study results favor our
proposed interface, we therefore in future, plan to conduct
an extensive user study by involving more participants and
evaluate our visual system and control modalities with dif-
ferent tasks. In addition, we plan to address problems related

to the Leap Motion interface in terms of its physical demand
in the long tasks.
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