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Abstract— We present an autonomous driving planning algo-
rithm that takes into account neighboring drivers’ behaviors
and achieves safer and more efficient navigation. Our approach
leverages the advantages of a data-driven mapping that is used
to characterize the behavior of other drivers on the road. Our
formulation also takes into account pedestrians and cyclists and
uses psychology-based models to perform safe navigation. We
demonstrate our benefits over previous methods: safer behavior
in avoiding dangerous neighboring drivers, pedestrians and
cyclists, and efficient navigation around careful drivers.

I. INTRODUCTION

There are different kinds of drivers in urban environments,
and an expert human driver will identify dangerous drivers
and avoid them accordingly. However, existing autonomous
driving systems often treat all neighboring vehicles the same
and do not take actions to avoid the dangerous drivers. This
problem has been studied in transportation and urban plan-
ning works [31]. This line of works map drivers’ behaviors
with background information like age, gender, driving his-
tory, etc., but this information is not available to autonomous
vehicles. Therefore, to allow autonomous driving algorithms
to account for driving behaviors, a mapping between sensor
data and driving behaviors must be available.

Previous studies in transportation and urban studies [16],
[31] usually study the difference between aggressive drivers,
careful drivers and typical drivers. In particular, Guy et
al. [20] and Bera et al. [4], [5], [3] applied psychological
theory to capture human behaviors. Autonomous driving
systems that are on the roads right now uses a range of
different algorithms to interpret the sensor data: trajectory
data computation using semantic understanding or object
detection methods [18]. Some uses an end-to-end approach
to compute driving actions directly from sensor data[8].

Main Results: Our approach takes into account behaviors of
neighboring entities and plans accordingly to perform safer
navigation. We leverage the results of an extensive user study
that learned the relationship between vehicular trajectories
and the underlying driving behaviors: Trajectory to Driver
Behavior Mapping [12]. This work allows our navigation
algorithms to classify the driving behaviors of neighboring
drivers, and we demonstrated simulated scenarios with ve-
hicles, pedestrians, and cyclist where navigation with our
approach is safer.

Compared to prior algorithms, our algorithm offers the
following benefits:
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1. Driving Behavior Computation: Trajectory to Driver
Behavior Mapping established a mapping between five fea-
tures and six different driving behaviors, and conducted fac-
tor analysis on the six behaviors, which are derived from two
commonly studied behaviors: aggressiveness and carefulness.
The results show that there exists a latent variable that can
summarize these driving behaviors and that can be used to
measure the level of awareness that one should have when
driving next to another vehicle. The same study examined
how much attention a human pays to such a vehicle when
it is driving in different relative locations. We leverage the
results of this study and develop a proximity cost that reacts
to aggressive drivers more appropriately.

2. Improved Realtime Navigation: We enhance an existing
Autonomous Driving Algorithm [7] to navigate according
to the neighboring drivers’ behaviors. Our navigation algo-
rithm identifies potentially dangerous drivers in real-time and
chooses a path that avoids potentially dangerous drivers. In
particular, our approach accounts for pedestrians and cyclists,
and avoids them by considering their velocity relative to the
ego-vehicle. Our method can offer saver navigation and plan
more appropriately to avoid dangerous drivers than prior
works. We refer the readers to read [11] for the technical
details.

An overview of our approach is shown in Figure 1. The rest
of the paper is organized as follows. We present a detailed
overview of previous work in Section II. We describe the
mapping from trajectories to driving behaviors in Section III
and our autonomous driving algorithm in Section IV.

II. RELATED WORKS

A. Driving Behaviors Studies

Psychology, transportation, and urban planning researchers
have been studying human driving behaviors. Aljaafreh et
al. [1] classified drivers into four different levels of aggres-
siveness with accelerometer data. Feng et al. [16] categorized
drivers into three different level of aggressiveness according
to drivers’ background information (age, gender, experience,
etc.), and environmental factors (weather, traffic, etc.). Apart
from that, social psychologist have also studied the corre-
lation between driver background information and driving
behaviors [29], [2], and previous driving behaviors [9].
Besides, Meiring et al. [31] pointed out that careless drivers,
including drunk and distracted drivers, are also dangerous.
Despite the fact that these works have found mappings
between driving behaviors and a lot of other different factors,
most of these factors are unknown to autonomous vehicles
during navigation. We use neighboring vehicles’ trajectories,



Fig. 1: Overview of our Algorithm: (1) Training: a trajec-
tories database is training a mapping between trajectory
features and driving behaviors. (2) Behavior Extraction:
During navigation, the same set of features is extracted from
neighboring vehicles’ trajectories and mapped to driving
behaviors. (3) Navigation: a) the navigation algorithm first
plans a global route in accordance with map data, starting
point, and destination, and b) generates a set of candidate lo-
cal routes that obey traffic rules while considering real-time
traffics; c) the algorithm then removes infeasible candidates
using dynamic constrains and control obstacles; d) after that,
it performs an optimization to obtain the best navigation plan
based on the driving behavior we extracted in (2), along with
several other factors: Efficiency, Passenger Comfort, etc.

which can be computed from sensor data, to map driving
behaviors.

The following works have conducted analysis on aggres-
siveness and carefulness in accordance to trajectory related
data. Qi et al. [34] presented the relationship between driving
style, speed, and acceleration. Shi et al. [39] concluded that
measuring throttle opening is better than merely measuring
acceleration, as measuring deceleration (negative accelera-
tion) is not helpful in understanding the aggressiveness of
a driver. Murphey et al. [33] presented results to show that
measuring longitudinal jerk (changing lanes) is more helpful
than progressive jerk (along the traffic direction) in terms
of correlation to aggressiveness of drivers. Mohamad et al.
[32] performed abnormal detection using speed, acceleration,
and steering wheel movement. Sadigh et al. [35] proposed a
Convex Markov Chains model to predict the attention drivers
spend on driving. There are also works that are deployed
in cars to sound an alert when they find the user is not
paying attention to the road [19], [43], [6]. Besides, there is
considerable number of simulated driving models[40], [26],
[13] that have proposed different factors that imply driving
behaviors that can be mapped to navigation plans. Our work
leverages the results from a detailed user study described
in Section III to use the most relevant trajectory features to
driving behaviors.

B. Adaptation to Human Drivers’ Behaviors

One line of work went further to study how humans would
react to an autonomous vehicle’s actions. Sadigh et al. [36]

discovered that human drivers’ behaviors can be affected
when they observe an autonomous vehicle and that they
will react in certain ways when they observe different
actions of the autonomous vehicle [37]. Huang et al. [24]
proposed a technique to make autonomous car actions more
easily understand by humans, so that their reactions are
more predictable. Besides, an active learning approach [14]
using examples of expert human driver’s preferences has
been to model human driving behaviors. These works show
the importance of having autonomous vehicles navigating
according to human behaviors.

C. Autonomous Car Navigation

There is a significant number of works on navigating au-
tonomous vehicles [25], [38], [44], [28], [23], [42]. During
the DAPRA Urban Grand Challenge and the Grand Coop-
erative Driving Challenge, the participating research teams
proposed different navigation approaches [10], [17], [27],
[15]. Recently, Best et al. [7] proposed a novel navigation
algorithm, AutonoVi, which also considers steering and
acceleration planning, dynamic lane changes, and several
other scenarios. We proposed a new approach that takes into
account driving behavior, which is complimentary to these
previous work and can be combined with them.

III. TRAJECTORY TO DRIVER BEHAVIOR MAPPING

In this section, we describe the trajectory features that
are used to identify driver behaviors, the driving behavior
metrics, and the attention metrics used in a detailed user
study, Trajectory to Driving Behavior Mapping [12].

A. Features

The goal of Trajectory to Driving Behavior Mapping is to
leverage a set of trajectory features that map to driving
behaviors, assuming that the trajectories have already been
extracted from the raw sensor data. As described in the
previous section, a lot of features (e.g., drivers’ backgrounds,
throttle opening, environmental factors, etc.) that have been
mapped to driving behavior are not available for autonomous
vehicles. Therefore, the user study has derived a set of
variants and performed feature selection to select the most
relevant ones to use in the mapping.

Notation Description
vnei Relative speed to neighbors
vavg Average velocity
sfront Distance with front car
jl Longitudinal jerk
scenter Lane following metric

TABLE I: Five Features selected in Trajectory to Driving
Behavior Mapping

1) Acceleration: Previous works [33], [32], [39], [41] have
shown that acceleration can be used to identify driver aggres-
siveness. This study [33] found out that longitudinal jerk can
reflect aggressiveness better than progressive jerk, and this
has been further verified during the feature selection in the
user study.



2) Lane following: The metric proposed in this work [6]
measures the extent of lane following using the mean and
standard deviation of lane drifting and lane weaving. Trajec-
tory to Driving behavior proposes a feature that also depends
on lane drifting, but further differentiates drivers who keep
deviating from the center of the lane to the left and right, and
those drivers who are driving stably off the center of the lane.
Furthermore, when a vehicle is performing lane changing, the
effect on this metric of these trajectory segments is nullified
and will not impact this metric.

Let yl and y(t) be the center longitudinal position of the lane
in which the targeted car is in and the longitudinal position
of the car at time t, respectively. Also suppose a set of lane
changing events happened at time ti, C = {t1, t2, ..., tn},
the lane drift metric sC(t) is given by:

sC(t) =

{
0, if ∃t ∈ C s.t. t ∈ [t− k, t+ k],

y(t)− yl, otherwise.
(1)

where k is the amount of time that we nullify the impact of
lane changing to this metric.

Trajectory to Driving Behavior Mapping measures the rate
of change in drifting in τ seconds, so that this metric can
highlight those drivers who are drifting more frequently from
the center of the lane. The overall lane following metric is
therefore defined as below. It is also illustrated in Figure 2.

scenter =

∫
|sC(t)|

[
µ+

∫ t

t−τ
|s′∅(t)|dt

]
dt, (2)

where µ is a parameter that differentiates drivers who are
driving stably off the center of the lane, and those who are
driving along the center of the lane.

Fig. 2: Lane following metric illustration. The lane following
metric, scenter, is given by the sum of the area under the plot
s′center. The example shows that the lane following metric
can differentiate drivers from drifting left and right (i iii),
driving along the center of the lane (ii), changing lanes (iv),
and consistently driving off the center of the lane (v).

3) Relative Speed: Trajectory to Driving Behavior Mapping
designed the following metric to capture the relationship
between a given driving behavior and the relative speed of
the car with respect to neighboring cars:

vnei =

∫ ∑
n∈N

max(0,
v(t)− vn(t)

dist(x(t), xn(t))
)dt, (3)

where N is the set containing all neighboring cars within a
reasonably huge range. v(t), x(t), vn(t), xn(t) are the speed
and the position of the targeting car, and the position and the
speed of the neighbor n, respectively.

This metric relies merely on the speed and position of the
neighbors, and it can represent the actual driving speed of
the targeted vehicle with respect to it’s neighbor better than
simply using relative speed.

B. Driving Behavior Metrics and Attention Metrics

Aggressiveness [16], [1], [22] and Carefulness [31], [35],
[30] are two metrics that are commonly used to identify
dangerous drivers. In typical social psychology studies, re-
lated items are introduced into user evaluation to ensure the
robustness of the results. Therefore, Trajectory to Driving
Behavior mapping evaluated four more driving behaviors
apart from Aggressiveness and Carefulness, and those are
listed in Table II.

When an aggressive or careless driver is observed, depending
on the position of that driver with respect to the targeted
vehicle, the amount of attention that the driver of the targeted
vehicle pays would still vary. Therefore, when evaluating the
users’ responses when driving as the targeted vehicle, the
users are also asked to rate the four attention metrics listed
in TableII.

Symbol Description Symbol Level of Attention when
b0 Aggressive b6 following the target
b1 Reckless b7 preceding the target
b2 Threatening b8 driving next to the target
b3 Careful b9 far from the target
b4 Cautious
b5 Timid

TABLE II: Six Driving Behavior metrics (b0, b1, ...,b5) and
Four Attention metrics (b6, b7, b8, b9) used in user evaluation
in obtaining the mapping

C. Data-Driven Mapping

Trajectory to Driving Behavior Mapping conducts a user
study that, has 100 participants identifying driver behaviors
from videos. The trajectories of the videos are extracted from
the Interstate 80 Freeway Dataset [21]. The users were asked
to rate the metrics we listed in Table II on a 7-point scale
and a 5-point scale for driving behavior and attention metrics,
respectively.

After that, feature selection was applied to the results using
least absolute shrinkage and selection operator (Lasso) analy-
sis. In addition, the five features that are most appropriate for
mapping to driving behaviors are extracted from ten potential
ones. It concluded that using {scenter, vnei, sfront, vavg, jl}
in mapping between features and driving behavior, and
{scenter, vnei, vavg} in the mapping between features and
attention metrics can produce best regression models.

Using {scenter, vnei, sfront, vavg, jl} and
{scenter, vnei, vavg} as the features, linear regression
is applied to obtain the mapping between these selected



features and the drivers’ behaviors. The results we obtained
are below. For Bbehavior = [b0, b1, ..., b5]

T ,

Bbehavior =


1.63 4.04 −0.46 −0.82 0.88 −2.58
1.58 3.08 −0.45 0.02 −0.10 −1.67
1.35 4.08 −0.58 −0.43 −0.28 −1.99
−1.51 −3.17 1.06 0.51 −0.51 1.39
−2.47 −2.60 1.43 0.98 −0.82 1.27
−3.59 −2.19 1.75 1.73 −0.30 0.61




scenter
vnei
sfront
vavg
jl
1


(4)

Moreover, for Battention = [b6, b7, b8, b9]
T ,

Battention =

 Bback
Bfront
Badj
Bfar

 =

 0.54 1.60 0.11 −0.8
−0.73 1.66 0.63 −0.07
−0.14 1.73 0.25 0.15
0.25 1.47 0.17 −1.43


scentervnei

vavg
1

 (5)

We refer the readers to read [11] for more technical details
and analysis.

IV. NAVIGATION

In this section, we describe how we leverage the benefits
of identifying driver behaviors and ensure safe navigation.
TDBM [12] extends an autonomous car navigation algo-
rithm, AutonoVi [7], and shows improvements in its perfor-
mance by using our driver behavior identification algorithm
and TDBM. AutonoVi is based on a data-driven vehicle
dynamics model and optimization-based maneuver planning,
which generates a set of favorable trajectories from among a
set of possible candidates, and performs selection among this
set of trajectories using optimization. It can handle dynamic
lane-changes and different traffic conditions.

The approach used in AutonoVi is summarized below: The
algorithm establishes a graph of roads from a GIS database
and computes the shortest global route plan using A* algo-
rithm. Taking into account traffic rules and real-time traffic,
the plan is translated to a static guiding path, which consists
of a set of C1 continuous way-points. AutonoVi then samples
the speed and steering angle in a favourable range of values
to obtain a set of candidate trajectories. Using the Control
Obstacles approach, AutonoVi eliminates the trajectories that
would lead to a possible collision. With the set of collision-
free trajectories, AutonoVi selects the best trajectory using
an optimization approach. It selects trajectories that avoid: i)
deviating from the global route; ii) unnecessary lane changes;
ii) sharp turns, breaking, and acceleration, which lead to
discomforting experiences for passengers; and iv) getting to
close to other road entities (including vehicles, pedestrians,
and cyclists).

A. Neighboring Vehicles

AutonoVi proposed a proximity cost function to differentiate
entities by class to avoid getting too close to other objects.
It considers all vehicles as the same and applies the same
penalization factor, Fvehicle, to them. Similarly, it applies
higher factors : Fped and Fcyc to all pedestrians and all

cyclists, respectively. The original proximity cost used in
AutonoVi is:

cprox =

N∑
n=1

Fvehicle e
−d(n) (6)

This cost function has two issues: i) it cannot distinguish
dangerous drivers to avoid driving too close to them, and
ii) it diminishes too rapidly due to its use of an exponential
function. Therefore, TDBM proposed a novel proximity cost
that can solve these problems:

c′prox =

N∑
n=1

c(n) (7)

c(n) =


0 if d ∈ [dt2, inf),

STDBMBfar
dt2−d(n)

dt2
if d ∈ (dt, dt2],

STDBM
[ (dt−d(n))(Br−Bfar)

dt
+Bfar

]
if d ∈ (0, dt].

(8)

where d(n) is the distance between the car navigating with
TDBM and the neighbor n; dt is a threshold distance
beyond which neighbors will be applied with the ‘far away’
metric Bfar; and dt2 is a threshold distance beyond which
neighbors would not have any impact on TDBM’s navigation.
Bfar and Br refers to the attention metrics in Equation 5.

This proximity cost used in TDBM discouraged the optimizer
from picking any candidate whose path is close to these
dangerous drivers. However, this approach has a drawback:
when the ego-vehicle and the neighboring vehicle are both
slow, some unnecessary lane changing may occur. To avoid
this, we add the relative velocity of the neighboring vehicle
in relation to the ego-vehicle into the cost function. The new
cost function also nullifies the effect of the cost on vehicles
that are driving away from the ego-vehicle. The new cost
function for vehicles is:

c′vehicle =

N∑
n=1

max(0, vego − vn)c(n) (9)

where vego and vn are the current progression speed along
the lane of the ego-vehicle and the neighbor n respectively.

B. Pedestrians and Cyclists

The proximity costs for pedestrians and cyclists in AutonoVi
and TDBM are still diminishing rapidly and do not take
into consideration the velocity of the pedestrian/cyclist. We
propose accounting for the current velocity in order to
better predict and represent the zones to be avoided by the
navigation algorithm:

c′obs =

N∑
n=1

F (n)max(0, vn · ~sego−~sn
||~sego−~sn|| )

F (n) + ||~sego − ~sn||
(10)



where F (n) returns Fped or Fcyc depending on the type of
obstacle n. vn represents the current normalized velocity of
the pedestrian/cyclist. ~sego and ~sn are the position of the
ego-vehicle and the obstacle n, respectively.

Using these new cost functions, we can avoid drivers that are
potentially riskier, stay away from pedestrians and cyclists
more appropriately, and select a better navigation path.
Examples of scenarios are illustrated in Figure 3.

V. CONCLUSION AND FUTURE WORKS

We present a new navigation approach leveraging the esti-
mation of neighboring human drivers’ behaviors and react
to them accordingly. Using our approach, the navigation
algorithm can more accurately estimate the level of aware-
ness the ego-vehicle should have about neighboring vehicles,
pedestrians and cyclists, and more effectively avoid those that
require a higher level of awareness. Our approach can pro-
vide safer navigation among aggressive drivers, pedestrians,
and cyclist and more efficient navigation when facing careful
drivers.

The trajectory data that is currently available in the au-
tonomous driving research community are limited, as la-
beling raw images are expensive. Currently, pedestrian and
vehicle detection methods are advancing, and soon will be
able to extract trajectory data reliably from raw data. The
Trajectory to Driving Behavior Mapping applied in this
work is based on highways, and the driving behaviors could
be different in urban environment as there are pedestrians
and cyclists involved. Furthermore, driving and pedestrians
behaviors are different across countries and regions. With
more data available, we would like to evaluate our approach
on urban environments. Besides, there are works conducted
to predict pedestrians trajectories (e.g., SocioSense [5]),
and we can combine them to navigate even safer around
pedestrians and cyclists in the future.

REFERENCES

[1] A. Aljaafreh, N. Alshabatat, and M. S. N. Al-Din. Driving style
recognition using fuzzy logic. In Vehicular Electronics and Safety
(ICVES), 2012 IEEE International Conference on, pages 460–463.

[2] K. H. Beck, B. Ali, and S. B. Daughters. Distress tolerance as a
predictor of risky and aggressive driving. Traffic injury prevention,
15(4):349–354, 2014.

[3] A. Bera, T. Randhavane, E. Kubin, A. Wang, K. Gray, and
D. Manocha. Classifying group emotions for socially-aware au-
tonomous vehicle navigation. 2018.

[4] A. Bera, T. Randhavane, and D. Manocha. Aggressive, tense, or shy?
identifying personality traits from crowd videos. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI-17, 2017.

[5] A. Bera, T. Randhavane, R. Prinja, and D. Manocha. Sociosense:
Robot navigation amongst pedestrians with social and psychological
constraints. In Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ
International Conference on, pages 7018–7025.

[6] L. M. Bergasa, D. Almerı́a, J. Almazán, J. J. Yebes, and R. Arroyo.
Drivesafe: An app for alerting inattentive drivers and scoring driving
behaviors. In Intelligent Vehicles Symposium Proceedings, 2014 IEEE,
pages 240–245. IEEE, 2014.

[7] A. Best, S. Narang, L. Pasqualin, D. Barber, and D. Manocha.
Autonovi: Autonomous vehicle planning with dynamic maneuvers and
traffic constraints. arXiv:1703.08561, 2017.

Fig. 3: Examples of our navigation approach (white tra-
jectories) taking into consideration other drivers’ behaviors,
and the approach that does not (red trajectories). The cost
map of each neighbor contributing to c(n) is shown for
its surrounding area. (a) The aggressive driver with higher
cost is avoided; (b) the vehicle tailgating our ego-vehicle
and our approach allows the ego-vehicle to switch lanes
and avoid it; (c) the ego-vehicle is facing heavy traffic,
and it chooses to follow the neighbor with the least amount
of attention required; (d) the ego-vehicle stops because a
pedestrian is walking towards the road, despite the traffic
rule, and suggests the ego-vehicle may proceed and; (e) the
ego-vehicle slows down because a cyclist is in front of it,
and an aggressive driver is driving next to it.

[8] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,



P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al. End
to end learning for self-driving cars. arXiv:1604.07316, 2016.

[9] J. C. Brill, M. Mouloua, E. Shirkey, and P. Alberti. Predictive
validity of the aggressive driver behavior questionnaire (adbq) in a
simulated environment. In Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, volume 53, pages 1334–1337.
SAGE Publications Sage CA: Los Angeles, CA, 2009.

[10] M. Buehler, K. Iagnemma, and S. Singh. The DARPA urban challenge:
autonomous vehicles in city traffic, volume 56. springer, 2009.

[11] E. Cheung, A. Bera, E. Kubin, K. Gray, and D. Manocha. Identifying
driver behaviors using trajectory features for vehicle navigation. In
Intelligent Robots and Systems (IROS), 2018 IEEE/RSJ International
Conference on.

[12] E. Cheung, A. Bera, E. Kubin, K. Gray, and D. Manocha. Identifying
Driver Behaviors using Trajectory Features for Vehicle Navigation.
ArXiv e-prints, Mar. 2018.

[13] C. F. Choudhury. Modeling lane-changing behavior in presence of
exclusive lanes. PhD thesis, Massachusetts Institute of Technology,
2005.

[14] A. D. D. Dorsa Sadigh, S. Sastry, and S. A. Seshia. Active preference-
based learning of reward functions. In Robotics: Science and Systems
(RSS), 2017.

[15] C. Englund, L. Chen, J. Ploeg, E. Semsar-Kazerooni, A. Voronov,
H. H. Bengtsson, and J. Didoff. The grand cooperative driving
challenge 2016: boosting the introduction of cooperative automated
vehicles. IEEE Wireless Communications, 23(4):146–152, 2016.

[16] Z.-X. Feng, J. Liu, Y.-Y. Li, and W.-H. Zhang. Selected model and
sensitivity analysis of aggressive driving behavior. Zhongguo Gonglu
Xuebao(China Journal of Highway and Transport), 25(2):106–112,
2012.

[17] A. Geiger, M. Lauer, F. Moosmann, B. Ranft, H. Rapp, C. Stiller,
and J. Ziegler. Team annieway’s entry to the 2011 grand cooperative
driving challenge. IEEE Transactions on Intelligent Transportation
Systems, 13(3):1008–1017, 2012.

[18] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[19] D. A. Goldman. Using a smartphone while driving can save your life.
Israel Mobile Summit, 2011.

[20] S. J. Guy, S. Kim, M. C. Lin, and D. Manocha. Simulating
heterogeneous crowd behaviors using personality trait theory. In
Proceedings of the ACM SIGGRAPH/Eurographics symposium on
computer animation, pages 43–52, 2011.

[21] J. Halkia and J. Colyar. Interstate 80 freeway dataset. Federal Highway
Administration, U.S. Department of Transportation, 2006.

[22] P. B. Harris, J. M. Houston, J. A. Vazquez, J. A. Smither, A. Harms,
J. A. Dahlke, and D. A. Sachau. The prosocial and aggressive driving
inventory (padi): A self-report measure of safe and unsafe driving
behaviors. Accident Analysis & Prevention, 72(Supplement C):1 – 8,
2014.

[23] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun.
Autonomous automobile trajectory tracking for off-road driving: Con-
troller design, experimental validation and racing. In American Control
Conference ACC’07, pages 2296–2301. IEEE, 2007.

[24] S. H. Huang, D. Held, P. Abbeel, and A. D. Dragan. Enabling robots
to communicate their objectives. arXiv:1702.03465, 2017.

[25] C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka. Real-time
motion planning methods for autonomous on-road driving: State-of-
the-art and future research directions. Transportation Research Part
C: Emerging Technologies, 60:416–442, 2015.

[26] A. Kesting, M. Treiber, and D. Helbing. General lane-changing model
mobil for car-following models. Transportation Research Record:
Journal of the Transportation Research Board, (1999):86–94, 2007.

[27] R. Kianfar, B. Augusto, A. Ebadighajari, U. Hakeem, J. Nilsson,
A. Raza, R. S. Tabar, N. V. Irukulapati, C. Englund, P. Falcone, et al.
Design and experimental validation of a cooperative driving system
in the grand cooperative driving challenge. IEEE transactions on
intelligent transportation systems, 13(3):994–1007, 2012.

[28] S. Kolski, D. Ferguson, M. Bellino, and R. Siegwart. Autonomous
driving in structured and unstructured environments. In Intelligent
Vehicles Symposium, pages 558–563. IEEE, 2006.
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